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,is paper attempts to improve the robustness and rapidity of a microgyroscope sensor by presenting a double-loop recurrent
fuzzy neural network based on a nonsingular terminal slidingmode controller. Compared with the traditional control method, the
proposed strategy can obtain faster dynamic response speed and lower steady-state error with high robustness in the presence of
system uncertainties and external disturbances. A nonlinear terminal sliding mode controller is designed to guarantee finite-time
high-precision convergence of the sliding surface and meanwhile to eliminate the effect of singularity. Moreover, an exponential
approach law is used to accelerate the convergence rate of the system to the sliding surface. For suppressing the chattering, the
symbolic function in the ideal sliding mode is replaced by the saturation function. To suppress the effect of model uncertainties
and external disturbances, a double-loop recurrent fuzzy neural network is introduced to approximate and compensate system
nonlinearities for the gyroscope sensor. At the same time, the double-loop recurrent fuzzy neural network can effectively ac-
celerate the speed of parameter learning by introducing the adaptive mechanism. Simulation results indicate that the control
system with the proposed controller is easily implemented, and it has higher tracking precision and considerable robustness to
model uncertainties compared with the existing controllers.

1. Introduction

,e Micro Electro mechanical system (MEMS) gyroscope is
an excellent measuring element for angular velocity sensing
in the inertial navigation system due to its outstandingly
simple and cheap system integration [1]. For improving the
control accuracy of microgyroscope, one has to resolve the
cross stiffness and cross damping effects generated by fab-
rication imperfections to thermal and mechanical noise [2].
In recent years, with the development of intelligent control
methods, some advanced control algorithms have been
applied to micro-gyroscope control systems. Raman et al.
corrected the quadrature error in the digital domain of the
gyroscope system with an unconstrained force feedback [3].
Rahmani et al. exploited a sliding PID controller to enhance
the robustness of the control system and improve the
convergence rate for the reaching stage of the sliding surface

[4]; Fazlyab et al. incorporated an additional interval sliding
mode control with parameter estimation to track the res-
onant frequencies and to eliminate the undesired me-
chanical couplings [5].

Among the foregoing strategies, the slidingmode control
scheme (SMC) has the outstanding properties of fast re-
sponse, high robustness, and easy implement [6]. Due to
these outstanding advantages, sliding mode control suits a
wide range of industrial applications, such as spacecraft
flights, piezoelectric actuators, autonomous aerial vehicles,
and mechatronic motor-table systems. In SMC, the tracking
error will converge to zero gradually after the system state
trajectory moves to the switching surface [7, 8]. Wang and
Yau proposed a nonlinear model of a gyroscope based on the
SMC, which can adjust the driving signal of the gyroscope
according to the change of its parameters, and ensure that
the gyroscope is always in the resonant state [9]. However,
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SMC is easily affected by controller chattering caused by
structural discontinuity, and a second-order SMC has been
proved to eliminate the chattering without reducing the
control accuracy in [10]. Subjected to the SMC, time delay
compensation has been synthesized into the robust control
strategy to provide faster convergence with negligible
chattering [11]. Fei and Feng proposed a super-twisting
sliding mode control algorithm applied in the gyroscope
system, which can weaken the effect of chattering [12].
Although the speed of asymptotic convergence can be
controlled by changing the sliding surface parameters, the
conventional sliding mode tracking error still has difficulty
in arriving to convergence bound in finite time [8]. To solve
this problem, Venkataraman and Gulati and Man et al.
proposed a terminal sliding mode controller (TSMC)
[13, 14]. In the TSMC, the traditional linear sliding mode is
replaced by nonlinear sliding mode for accelerating the rate
of convergence near the equilibrium point [15]. Applying the
advantages of the TSMC in the MEMS gyroscope, Ghanbari
and Moghanni-Bavil-Olyaei exhibited faster trajectory
tracking speed and estimated the gyroscope parameters with
the Kalman filter observer [16]. Adaptive control is syn-
thesized into the double-loop integral terminal sliding mode
in [17], which ensured that the position and speed tracking
errors of the vehicle could converge to zero in finite time. An
adaptive fuzzy-neural fractional-order current controller is
introduced in the terminal sliding controller to track ideal
current of an active power filter with limited time control
performance in [18]. However, because of singularity
problem, as the system state happens to be in a specific
subspace of the state space, the signal of the terminal sliding
mode controller may appear infinite abruptly. Subjected to
the TSMC, some scholars designed a nonsingular terminal
sliding mode controller (NTSMC). ,e NTSMC inherits the
advantage of finite-time convergence of the TSMC and
eliminates the negative exponential term in the control rate,
thus avoiding the denominator approaching zero. Ma and
Lin verified its engineering applicability in the permanent
magnet synchronous motor servo system [19]. Hou et al.
applied the NTSMC to the current control system to solve
the singularity problem with a fast response [20].

Neural network and fuzzy control are two commonly
used methods to solve the control problems in nonlinear
systems. RBF neural networks in MEMS systems were used
to estimate the unknown upper bound of model uncertainty
and external disturbances [21]. Fuzzy control is another
control method based on linguistic decision, which shows
satisfactory fault tolerance capability and unprecedented
parallelism cyclability [22]. Zhu and Fei estimated the upper
bound of the error of the disturbance observer with a fuzzy
system in a DC-AC inverter [23]. A robust adaptive control
strategy using a fuzzy compensator adopted on the MEMS
triaxial gyroscope is proposed in [24]. In recent years, some
scholars have integrated fuzzy control and neural network
control to propose fuzzy neural network (FNN) control for
overcoming the nonlinearity and complexity of time-varying
systems in practical engineering. Fei and Wang combine
FNN control with fractional-order sliding mode control in
the current control system for active power filter [25]. Fei

and Liang added fuzzy neural network control to the gy-
roscope feedback system [26]. Lee and Teng proposed a
complex fuzzy neural network structure and expanded the
basic ability of the FNN to cope with complicated nonlinear
problem [27]. A new output feedback neural structure which
has two hidden layers is proposed in [28–30].

In this paper, we proposed a double-loop recurrent fuzzy
neural network (DRFNN) of the NTSMC, in which the
values of center vector and base width can be stabilized to the
optimum value according to the adaptive algorithm
designed in the process of parameter learning. At the same
time, because the inner and outer signal feedback loop is
added, compared with the ordinary FNN, the DRFNN can
store more information and has higher accuracy in function
approximation. ,e motivation of this study is to design a
high-precision control method for controlling the MEMS
gyroscope with fast response speed and high robustness. A
NTSMC, which utilizes a nonsingular terminal sliding
surface, is developed to accelerate convergence velocity and
improve control accuracy. However, despite these advan-
tages, the development of the NTSMC remains hindered by
the nonlinear term of the gyroscope sensor. To be insensitive
to uncertainties and disturbances, the DRFNN with an
adaptive algorithm is synthesized into the NTSMC. ,e
novelties and contributions of the proposed DRFNN of the
NTSMC can be addressed in the following aspects:

(1) A NTSMC is established to accelerate the response of
the system to converge to the sliding surface; al-
though the system state of the traditional TSMC can
converge to origin in finite time, it would cause
singular problems in the control process. In this
paper, we eliminate the negative exponential term
with a nonsingular terminal control rate, thus pre-
venting the singularity fundamentally.

(2) For improving the robustness of the system, the
DRFNN is synthesized into the NTSMC to com-
pensate system nonlinearities. ,e DRFNN has in-
corporated inner and outer feedback loops to the
ordinary FNN structure, which optimizes the net-
work structure and shortens the learning time of
parameters so that it can better adapt to the complex
nonlinear system model.

,is paper is organized as follows. Section 2 describes the
dynamics of the MEMS gyroscope, and the mathematical
model is also presented here. In Section 3, we adopt the
NTSMC into the MEMS gyroscope, where the systematical
analysis for the stability and the control performance is
carried out, and then the DRFNN scheme with inner and
outer feedback loops is formulated in details. Simulation
studies are presented in Section 4 to validate the effectiveness
by comparing with other existing controllers for the MEMS
gyroscope. Section 5 summarizes all the work.

2. Mathematical Model

When the moving point moves relative to a moving refer-
ence frame and the moving reference frame rotates at the
same time, the point will have Coriolis acceleration. ,e
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working principle of the microgyroscope is to measure the
rotation angular velocity of the motion coordinate system
relative to the inertial coordinate system indirectly by
detecting the vibration caused by the Coriolis acceleration.

Abstract the motion of the particle into two coordinate
systems, as shown in Figure 1, where OX1Y1Z1 is a moving
coordinate system, assuming the direction vector of the
coordinate system are i, j, and k, respectively, and OX2Y2Z2
is an inertial coordinate system. Suppose the moving co-
ordinate system rotates relative to the inertial coordinate
system and the rotational angular velocity is Ω. ,e distance
from the particle m to the origin is denoted as r(x, y, z),
which can be regarded as r � xi + yj + zk, the relative ve-
locity of the moving coordinate system with respect to the
inertial coordinate system is Vr � idx/dt + jdy/dt + kdz/dt,
the angle between the velocity Vr and angular velocity Ω is
marked as θ, and the Coriolis acceleration caused by the
motion of rotation is expressed as ak � 2Ω × Vr, whose
direction perpendicular to the rotating angular velocity Ω
and particle motion direction [31], Figure 2 is a schematic
diagram of Coriolis acceleration.

Suppose the mass of the gyroscope is m and the force on
the output axis generated by the Coriolis acceleration is
denoted as Coriolis inertial force F, the expression is F �

mak � 2mΩ × vr and its magnitude is proportional to the
input angular velocity. Assuming the x-axis direction is the
driving mode, y-axis direction is the sensing mode, sim-
plifying the microgyroscope to motion model, as shown in
Figure 3, according to the effect of Coriolis acceleration,
when the mass m moves harmonically driven by periodic
electrostatic force, if the angular velocity input Ω is detected
on the z-axis, the mass m will vibrate on the y-axis.

Considering that the presence of angular velocity Ω in
the z-axis direction brings about a dynamic coupling be-
tween the x-axis and y-axis, we decompose angular velocity
into three coordinate axes of x, y, and z, the value of which
is Ωx, Ωy, and Ωz, respectively. Referring to [32], there is an
ideal assumption that the gyro’s rotational velocity Ωz re-
mains constant over a sufficiently long period and the dif-
ferential equation of the x-axis and y-axis can be regarded as
follows:

m €x + dx _x + kx − m Ω2y +Ω2z􏼐 􏼑􏽨 􏽩x + mΩxΩyy

� ux + 2mΩz _y,

m €y + dyy + ky − m Ω2y +Ω2z􏼐 􏼑􏽨 􏽩y + mΩxΩyx

� uy − 2mΩz _x,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

wheredx anddy are the damping coefficients; kx and ky are the
spring coefficients, respectively;Ωx,Ωy, andΩz are the angular
rate components along each axis of the gyroscope frame; and
ux and uy are electrostatic forces in x and y directions.

In the actual manufacturing process, the structure of the
microgyroscope is not completely symmetric because of
fabrication imperfections, so there will be additional dy-
namic coupling between x-axis and y-axis. In this case, even
without angular velocity input, the system will still have
output error of angular velocity. Taking the above factors
into consideration, (1) can be rewritten as

Z1

Z2

X2 X1

Y2

Y1

m(x, y, z)

r

Figure 1: ,e coordinate system of the motion of the particle.

ak

Vr

Ω

Figure 2: A schematic diagram of Coriolis acceleration.
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Figure 3: Simplified motion model of the MEMS gyroscope.

Complexity 3



www.manaraa.com

m €x + dxx _x + dxy _y + kxxx + kxyy � ux + 2mΩz _y,

m €y + dxy _x + dyy _y + kxyx + kyyy � uy − 2mΩz _x,

⎧⎨

⎩ (2)

where kxy and dxy are the coupling spring coefficient and
coupling damping coefficient caused by the asymmetries of
suspension structure. Although these two parameters are
unknown, they do not affect the accuracy of the model
because they are too small compared with the proof mass.
Meanwhile, Ωx and Ωy are also treated as unknown com-
ponents of spring terms.

Considering that there is a big time-scale difference
between the input angular velocity and the self-resonant
frequency of the microgyroscope, we deal with the equation
in a nondimensionalized way for numerical simulation.

,e nondimensionalized model is as follows:
€x + dxx _x + dxy _y + ω2

xx + ωxyy � ux + 2Ωz _y,

€y + dxy _x + dyy _y + ωxyx + ω2
yy � uy − 2Ωz _x,

⎧⎨

⎩ (3)

where
dxy

mω0
⟶ dxy,

ux

mω2
0q0
⟶ ux,

uy

mω2
0q0
⟶ uy,

kxx

mω2
0
⟶ ω2

x,
kxy

mω2
0
⟶ ωxy,

kyy

mω2
0
⟶ ω2

y,
Ωz

ω0
⟶Ωz,

(4)

wherem, q0, andω0 are referencemass, reference length, and
natural resonance frequency, respectively, and Ωz is the
unknown constant angular velocity.

For the convenience of the expression, we transform the
expression equivalently and get the following form:

€q + D _q + Kq � u − 2Ω _q + d(t), (5)

where

q �
x

y
􏼢 􏼣, D �

dxx dxy

dxy dyy

⎡⎣ ⎤⎦, K �
ω2

x ωxy

ωxy ω2
y

⎡⎢⎢⎣ ⎤⎥⎥⎦, u �
ux

uy

⎡⎣ ⎤⎦,

Ω �
0 − Ωz

Ωz 0
􏼢 􏼣,

(6)

where D, K, and Ω are unknown parameters that changes
over time, d(t) is the external disturbance, and it is bounded
by a positive constant L as |d(t)| ≤L.

3. Nonsingular Terminal Sliding Mode Control

For the microgyroscope system, how to maintain the stability
of the driving shaft excitation signal is the key to ensure the
accuracy of measurement [33]. In order to generate a constant
excitation condition, we assume that the microgyroscope
follows an ideal oscillator qm(t) as the reference signal. In this
paper, we design a double-loop recurrent fuzzy neural net-
work (DRFNN) of nonsingular terminal sliding mode control
(NTSMC) to make the trajectory of the real gyroscopes q(t)

follow that of the reference signal qm(t); meanwhile, we also

use the DRFNN to estimate the unknown lumped un-
certainties for compensating system nonlinearities. ,e slid-
ing surface of the nonsingular terminal is denoted as follows:

s � e +
1
β

_e
p/q

, (7)

where s � s1 s2􏼂 􏼃, e � qm − q � qm1 − q1 qm2 − q2􏼂 􏼃

stands for tracking error, β � β1 β2􏼂 􏼃 is a sliding surface
constant, and p and q are both positive odd and they satisfy
1<p/q< 2.

Taking the derivative of the sliding surface function
yields

_s � _e +
1
β

p

q
_e
(p/q)− 1

€qm − €q( 􏼁. (8)

From (5), we can get that
€q � f(q, t) + u + d(t), (9)

where f � f1 f2􏼂 􏼃
T

� − (D _q + 2Ω _q + Kbq), which repre-
sents the matched lumped uncertainty, and u � u1 u2􏼂 􏼃 is
controllable electrostatic force.

Assuming that the lumped uncertainty f(q, t) is
bounded, taking equation (9) into (8), we obtain

_s � _e +
1
β

p

q
_e
(p/q)− 1

€qm − f(q, t) − u − d(t)( 􏼁. (10)

In order to get _s � 0 and speed up the convergence of the
system state to the sliding surface, the exponential control
rate is synthesized into the controller. ,e controller is
designed as follows:

u � €qm − f(q, t) + β
q

p
_e
2− (p/q)

+(L + η)sgn(s) + η′s, (11)

where η and η′ are constant matrix in exponential reaching
rates.

Substituting control rate (11) into equation (10), we can
obtain

_s �
1
β

p

q
_e
(p/q)− 1

− (L + η)sgn(s) − d(t) − η′s( 􏼁. (12)

For proving the stability of the sliding mode control
system, a Lyapunov function is selected as follows:

V1 �
1
2
s
2
. (13)

Taking the derivative of V1 with respective to time, we
obtain

_V1 � s _s � −
1
β

p

q
_e
(p/q)− 1

(L + η)sgn(s) + d(t) + η′s􏼂 􏼃s

≤ −
1
β

p

q
_e
(p/q)− 1

(η + L − d(t))|s| + η′s2􏽨 􏽩

≤ −
1
β

p

q
_e
(p/q)− 1 η|s| + η′s2􏼐 􏼑 � −

1
β

p

q
_e
(p/q)− 1

|s| η + η′|s|( 􏼁.

(14)

Since η> 0, η′ > 0, and p and q are both odd, we get that
_e(p/q)− 1 > 0, so it can be concluded that _V1 ≤ 0. According to
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the Lyapunov stability criterion, the nonsingular terminal
slidingmode s� 0 can be reached in finite time, despite of the
uncertainty d(t).

Assuming the following boundedness,
1
β

p

q
_e
(p/q)− 1 η + η′| s |( 􏼁> ε, (15)

where ε> 0, so it can be concluded that

V1 ≤ − ε|s| � − ε
���
V1

􏽰
. (16)

(16) can be rewritten as
dV1���

V1
􏽰 ≤ −

�
2

√
ε dt. (17)

Denoting the tr as the total time from the initial state to
s(t) � 0, taking the integral of (17) with respect to time, we
obtain

􏽚
V1 tr( )

V1(0)

dV1���
V1

􏽰 ≤ −
�
2

√
􏽚

tr

0
ε dt. (18)

We can deduce the tr as

tr ≤

���������������
2 V1(0) − V1 tr( 􏼁( 􏼁

􏽱

ε
. (19)

Now we prove that s� 0 will be reached from any initial
state _e(0) in finite time.

When the system state reaches the sliding mode surface,
according to s � e + (1/β) _ep/q � 0, the tracking error will
converge to zero in tc time. tc can be calculated as
tc � p/(p − q)βe

1− (q/p)

(tr) . So, the system state can reach the
sliding mode surface from any initial state and converge to
the equilibrium point in a finite period of time.

4. Double-Loop Recurrent Fuzzy Neural
Network of Nonsingular Terminal Sliding
Mode Control

BecauseD,K, andΩ in (5) change with time and they cannot
be accurately obtained, it is difficult to obtain the un-
certaintiesf(q, t) in the gyroscope system, so the application
of controller (11) in engineering is not practicable. Con-
sidering that the neural network can compensate for non-
linear terms, the double-loop recurrent fuzzy neural network
(DRFNN) can be used to compensate unknown model
uncertainties.

Since the conventional neural network with fixed base
width and center vector lacks adaptive adjustment mecha-
nism in the face of different input signals, for adapting to the
complex nonlinear system model of the microgyroscope, a
double-loop recurrent fuzzy neural network (DRFNN), as
shown in Figure 4, is proposed in this paper, which is a three-
layer fuzzy neural network embedded with double closed-
loop dynamic feedback connection. ,e first layer is the
input layer, which is composed of the signal receiving nodes.
It adds the outer feedback loop to the basis of the traditional
fuzzy neural network structure, so the nodes in the input
layer can receive the output signals fed back by the signals

from the output layer. ,e second layer is the membership
layer. ,e nodes in this layer are responsible for the cal-
culation of the membership function. At the same time, the
signals of the previous step will be fed back to the nodes in
this layer through the inner feedback network. ,e third
layer is the output layer, which completes the calculation of
the signals transmitted by the fuzzy layer. ,e output signals
are transmitted back to the nodes of the input layer through
the outer feedback loop.

Next, specific functions of the input layer, membership
layer, and output layer are introduced as follows.

4.1. First Layer: Input Layer. ,e input layer of the DRFNN
realizes the transmission of the input signal
X � x1 x2 . . . xm􏼂 􏼃

T and receives the output signal exY

of the previous step back through the outer closed loop. ,e
output layer is associated with the input layer by the outer
gain Wrom. Supposing the output signal of the input layer is
θ � θ1 θ2 . . . θm􏼂 􏼃

T, where m is the total number of the
linguistic variables:

θm � xmWromexY. (20)

4.2.5eSecondLayer:MembershipLayer. ,eGaussian basis
function is presented as the membership function, and the
nodes of the membership layer complete the calculation of
the Gaussian function. In this layer, the inner closed loop
structure is added on the basis of the traditional FNN
membership layer structure. ,e nodes of this layer will feed
back the results of the previous Gaussian function calcu-
lation to the input layer and calculate the Gaussian basis
function together with the nodes of input. Supposing the
output of this layer is μi, which can be regarded as follows:

μi � exp −
θ · ri · exμi − ci

����
����
2

b2i

⎡⎢⎣ ⎤⎥⎦, (21)

where ri is the feedback gain of the inner layer, ci is the center
vector, and bi is the basis width.

4.3. 5e 5ird Layer: Output Layer. ,e output layer node
and each node in the membership layer are associated by
weight W � W1 W2 . . . Wk􏼂 􏼃. ,e signal nodes of the
output layer are labeled as Y, which represent the summation
of all input signals:

Y � 􏽘
n

k�1
Wkhk � W1h1 + W2h2 + · · · + Wnhn. (22)

Meanwhile, the output layer node feed back to the input
layer nodes through the outer closed loop, and the feedback
signal is denoted as exY.

Figure 5 shows the block diagram of the DRFNN of
NTSMC based on the microgyroscope, where the DRFNN is
used to predict and compensate the nonlinear terms of the
system.

Suppose the output of the DRFNN can be parameterized
as
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􏽢Γ(q) � 􏽢W
T􏽢l, (23)

where 􏽢W represents the estimated value of weighting matrix
of the DRFNN and 􏽢l is the estimated output vector of the
membership layer, which can be regarded as

􏽢l � 􏽢l q, 􏽢c, 􏽢b, 􏽢r, 􏽢Wro􏼐 􏼑. (24)

In (24), we assumed all DRFNN centers, widths, and
inner and outer gain can be estimated adequately.

According to Taylor’s formula, the 􏽥l can be calculated as
follows:

􏽥l �
zl

zc

􏼌􏼌􏼌􏼌􏼌􏼌􏼌c�􏽢c
c
∗

− 􏽢c( 􏼁 +
zl

zb

􏼌􏼌􏼌􏼌􏼌􏼌􏼌b�􏽢b
b
∗

− 􏽢b􏼐 􏼑 +
zl

zr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌r�􏽢r

· r
∗

− 􏽢r( 􏼁 +
zl

zWro

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Wro�􏽢W
ro

W
∗
ro − 􏽢Wro􏼐 􏼑 + Oh

� lc · 􏽥c + lb · 􏽥b + lr · 􏽥r + lWro
· 􏽥Wro + Oh,

(25)

where Oh is the higher order term, lc � 􏼂zl1/zc zl2
/zc...zlk/zc􏼃

T
|c��􏽢c,

lb �
zl1

zc

zl2

zc
...

zlk

zc
􏼢 􏼣

T
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌b�􏽢b

,

lr �
zl1

zr

zl2

zr
...

zlk

zr
􏼢 􏼣

T
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌r�􏽢r

,

lWro
�

zl1

zWro

zl2

zWro

...
zlk

zWro

􏼢 􏼣

T
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Wro�􏽢W

ro

.

(26)

We make the following assumption prior further
discussion.

Assumption 1. ,e uncertainties of the system f(q) can be
described by the optimal weight W∗, the optimal center
vector c∗, the optimal widths b∗, the optimal inner feedback
gain r∗, and the optimal outer feedback gain W∗ro as follows:

Γ(q) � W
∗T

l
∗

+ ε, (27)

where l∗ � l∗(x, c∗, b∗, r∗, W∗ro) and ε> 0 is the mapping
error, which is assumed to be bounded.

Based on assumption 1, the deviation between the un-
certainty Γ(q) and the estimated value 􏽢Γ(q) can be regarded
as

Γ(q) − 􏽢Γ(q) � W
∗T

l
∗

− 􏽢W
T􏽢l + ε

� W
∗T

(􏽢l +􏽥l) − 􏽢W
T􏽢l + ε

� W
∗T􏽢l + W

∗T􏽥l − 􏽢W
T􏽢l + ε

� 􏽥W
T􏽢l + 􏽢W

T􏽥l + 􏽥W
T􏽥l + ε

� 􏽥W
T􏽢l + 􏽢W

T􏽥l + ε0,

(28)

where 􏽥w � w∗ − ⌢w is the weighting matrix error between the
optimal value and the current estimated value.

Suppose ε0 is the approximate error, regarded as
ε0 � 􏽥W

T􏽥l + ε.
Replacing f(x) in (11) by 􏽢Γ(x), we can get a new control

law as follows:

U � €qm − 􏽢Γ(q) + β
q

p
_e
2− (p/q)

+(L + η)sgn(s) + η′s. (29)

Theorem 1. If the modified control law (29), with the
nonsingular terminal sliding surface (7) and the adaptive law
of the DRFNN designed as (30)–(34), is applied to the gy-
roscope system defined by (5), then the system’s tracking error
can converge to origin in a finite time, and the unknown
system uncertainties can be estimated online by the DRFNN
with high robustness:

_􏽥W � η1
1
β

p

q
_e
(p/q)− 1

s􏽢l, (30)

_􏽥c
T

� η2
1
β

p

q
_e
(p/q)− 1

s 􏽢W
T
lc, (31)

_􏽥b
T

� η3
1
β
p
q

_e
(p/q)− 1

s 􏽢W
T
lb, (32)

_􏽥r
T

� η4
1
β
p
q

_e
(p/q)− 1

s 􏽢W
T
lr, (33)

_􏽥W
T

ro � η5
1
β

p

q
_e
(p/q)− 1

s 􏽢W
T
lWro

, (34)

where η1, η2, η3, η4, and η5 are all positive gains.

Proof. Select the second Lyapunov function as

V2 �
1
2
S
2

+
1
2η1

tr 􏽥W
T 􏽥W􏼒 􏼓 +

1
2η2

tr 􏽥c
T
􏽥c􏼐 􏼑 +

1
2η3

tr 􏽥b
T􏽥b􏼒 􏼓

+
1
2η4

tr 􏽥r
T
􏽥r􏼐 􏼑 +

1
2η5

tr 􏽥W
T

ro
􏽥Wro􏼒 􏼓,

(35)

where tr(·) denotes the matrix trace operator.

x1 x2

wr01 wr02

r1j r2j

W1 Wk

Y

∑

Figure 4: ,e mode of the DRFNN.

6 Complexity



www.manaraa.com

Denoting
1
2η1

tr 􏽥W
T 􏽥W􏼒 􏼓 +

1
2η2

tr 􏽥c
T
􏽥c􏼐 􏼑 +

1
2η3

tr 􏽥b
T􏽥b􏼒 􏼓 +

1
2η4

tr 􏽥r
T
􏽥r􏼐 􏼑

+
1
2η5

tr 􏽥W
T

ro
􏽥Wro􏼒 􏼓 � M.

(36)

Take the time derivative of V2 and substitute control law
(29) into (35):

_V2 � S _S + _M

�
1
β

p

q
_e
(p/q)− 1

s 􏽢Γ(x) − Γ(x) − d(t)􏼔

− (L + η)sgn(s) − η′s􏼕 + _M.

(37)

Substitute equation (28) into equation (37) to obtain

_V2 �
1
β

p

q
_e
(p/q)− 1

s − 􏽥W
T􏽢l + 􏽢W

T􏽥l + ε0􏼒 􏼓 − d(t)􏼔

− (L + η)sgn(s) − η′s􏼕 + _M.

(38)

Substituting Taylor’s expansion of 􏽢l into the above
equation, we get that

_V2 � −
1
β

p

q
_e
(p/q)− 1

s 􏽥W
T􏽢l −

1
β

p

q
_e
(p/q)− 1

s 􏽢W
T

lc􏽥c + lb · 􏽥b + lr · 􏽥r􏼐

+ lWro
· 􏽥Wro + Oh􏼑 −

1
β

p

q
_e
(p/q)− 1

s ε0 + d(t)􏼂

+(L + η)sgn(s) + η′s􏼃 +
1
η1

tr 􏽥W
T _􏽥W􏼒 􏼓 +

1
η2

tr _􏽥c
T
􏽥c􏼒 􏼓

+
1
η3

tr
_􏽥b

T
􏽥b􏼒 􏼓 +

1
η4

tr _􏽥r
T
􏽥r􏼒 􏼓 +

1
η5

tr _􏽥W
T

ro
􏽥Wro􏼒 􏼓.

(39)

Substituting adaptation laws (30)–(34) into (39), we can
obtain

−
1
β

p

q
_e
(p/q)− 1

s 􏽥W
T􏽢l +

1
η1

tr 􏽥W
T _􏽥W􏼒 􏼓 � 0,

−
1
β

p

q
_e
(p/q)− 1

s 􏽢W
T
lc􏽥c +

1
η2

tr _􏽥c
T
􏽥c􏼒 􏼓 � 0,

−
1
β

p

q
_e
(p/q)− 1

s 􏽢W
T
lb

􏽥b +
1
η3

tr
_􏽥b

T
􏽥b􏼒 􏼓 � 0,

−
1
β

p

q
_e
(p/q)− 1

s 􏽢W
T
lr􏽥r +

1
η4

tr _􏽥r
T
􏽥r􏼒 􏼓 � 0,

−
1
β

p

q
_e
(p/q)− 1

s 􏽢W
T
lWro

􏽥Wro +
1
η5

tr _􏽥W
T

ro
􏽥Wro􏼒 􏼓 � 0.

(40)

,en, the _V2 can be written as follows:

_V2 � −
1
β

p

q
_e
(p/q)− 1

s ε0 + Oh0 + d(t) +(L + η)sgn(s) + η′s􏼂 􏼃

� −
1
β

p

q
_e
(p/q)− 1

s ε0 + Oh0 + η′s( 􏼁 −
1
β

p

q
_e
(p/q)− 1η|s|

−
1
β

p

q
_e
(p/q)− 1

(L|s| + d(t)s)

≤ −
1
β

p

q
_e
(p/q)− 1

s ε0 + Oh0 + η′s( 􏼁 −
1
β

p

q
_e
(p/q)− 1 η|s|

≤ −
1
β

p

q
_e
(p/q)− 1

|s| η − ε0 + Oh0( 􏼁( 􏼁 + η′s2􏽨 􏽩.

(41)

,en, two different cases will be discussed as follows:

(1) When s> 0, we can get _V2 as

Reference
signal

Input layer Membership
layer

Output
layer

exμ

μiθm

exY

Y = ∑n
k=1Wkhk

Nonsingular terminal
sliding surface

1
β

s = e + e

Exponential controller
usw = η sgn(s) + η′s

f

qm + qe

–

ueq

usw

u+

–

External interference



Nonsingular terminal sliding mode
controller

ueq = qm – f (q, t) + β  + L sgn(s)2–(p/q)
e

(p/q) q
p



MEMS
gyroscope

q = f (q, t) + u + d(t)

Figure 5: ,e block diagram of the DRFNN of NTSMC based on the MEMS gyroscope system.
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_V2 � −
1
β

p

q
_e
(p/q)− 1

|s| ε0 + Oh0 + η( 􏼁 +(L + d(t)) + η′|s|􏼂 􏼃.

(42)

Since the external disturbance d(t) is bounded by
|d(t)|≤L, whether d(t) is positive or negative, we
can always obtain L + d(t) is a positive scalar. Be-
sides, η′ is also a positive constant we set up in
advance, under the assumption p and q are both
positive vector matrix, it further induces that
_e(p/q)− 1 > 0 and η is bounded in η≥ εE + OE, where εE
and OE denote maximum eigenvalues of ε0 and Oh0,
respectively, and then we can get that _V2 ≤ 0.

(2) When s< 0, it satisfies s � − |s|, and the _V2 can be
written as

_V2 � −
1
β

p

q
_e
(p/q)− 1

|s| η − ε0 − Oh0( 􏼁 −
1
β
η′

p

q
_e
(p/q)− 1

s
2

−
1
β

p

q
_e
(p/q)− 1

|s|(L − d(t)).

(43)

Similar to case 1, L is the bound of the external dis-
turbance, so it satisfies L − d(t)> 0, under the as-
sumption p and q are both positive vector matrix, and
_e(p/q)− 1 > 0 can be guaranteed; so as long as η is
bounded in η≥ εE + OE, it can also be deduced that
_V2 ≤ 0.
_V2 is negative semidefinite. We can obtain that the
trajectory reaches the sliding surface in finite time and
remains on the sliding surface. At the same time, it
ensures that the V2, s and the adaptive variables
c, b, r, Wro, andW are all bounded. Define the function
Λ(t) ≡ (1/β)(p/q) _e(p/q)− 1[|s|(η − (ε0 + Oh0)) + η′s2] �

− _V2(t).
,en, the integral of Λ(t) with respect to time can be
expressed as

􏽚
t

0
Λ(τ)dτ ≤V2(0) − V2(t). (44)

As V2(0) is bounded, we can deduce that

lim
t⟶∞

􏽚
t

0
Λ(τ)d(τ)<∞. (45)

Additionally, _Λ(t) is bounded and it can be obtained
from Barbalat’s Lemma that limt⟶∞Λ(t) � 0. It im-
plies that the nonsingular terminal sliding surface
converges to zero as t⟶∞. Besides, the tracking
error also converges to zero as t⟶∞. In this aspect,
the DRFNN of the NTSMC system ensures the
asymptotical stability of the gyroscope system. □

5. Simulation Analysis

In order to evaluate the effectiveness of the control strategy
designed in this paper, we adopt the following micro-
gyroscope parameters:

m � 1.8 × 10− 7 kg,

dxx � 1.8 × 10− 6 Ns/m,

dyy � 1.8 × 10− 6 Ns/m,

dxy � 3.6 × 10− 7 Ns/m,

kxx � 63.955N/m,

kyy � 95.92N/m,

kxy � 12.779N/m.

(46)

Since the vibrationmagnitude of the x-axis and y-axis are
all submicron, we choose 1 µm as the reference length q0.
Considering that the natural frequency range commonly
used in the microgyroscope is all in KHz,ω0 is determined as
1 KHz. Assuming the magnitude of unknown angular ve-
locity is Ωz � 100 rad/s. After equivalent transformation as
described in Section 2, nondimensional model parameters of
the gyroscope are listed as follows:

ω2
x � 355.3,

ω2
y � 532.9,

ωxy � 70.99,

dxx � 0.01,

dyy � 0.01,

dxy � 0.002,

Ωz � 0.1.

(47)

In the simulation model, the expected motion trajec-
tories of the two axes are selected as xm � sin(4.17t) and
ym � 1.2 sin(5.11t). ,e initial states of the controlled object
are presented as 0 0 0 0􏼂 􏼃. ,e disturbance d(t) �

[0.5 randn(1, 1); 0.5randn(1, 1)] is white noise signal based
on standard normal distribution. In the simulation, the
sliding surface constant parameters of the nonsingular
terminal surface are selected as p � 9, q � 7, and β � 0.5.

In (23), the center vector, basis width, inner layer gain,
outer layer gain, and weight of the DRFNN are five fully
adjustable parameters. ,eir initial values are chosen as
c � − 0.01 − 0.005 0 0.005 0.01􏼂 􏼃, b � 1 1 1 1 1􏼂 􏼃, r �

− 0.2 0.05 0 − 0.05 0.3􏼂 􏼃, Wr0 � 10, and W � − 0.2 0.05􏼂

0 − 0.05 − 0.3], and their values can be stabilized to ap-
propriate values according to adaptive laws (30)–(34). In
(29), to emphasize the fast response, the sum of the limit of
disturbance L and the approach gain η is taken as η″ � 10; in
addition, another approach gain η′ is taken as. η′ � 10.

In order to reduce the chattering, we replace the sym-
bolic function sign(s) in the ideal sliding mode with the
saturation function sat(s), and its expression is
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sat(s) �

1, s> δ,

ks, |s|≤ δ,

− 1, s< − δ,

⎧⎪⎪⎨

⎪⎪⎩
(48)

where k � 1/δ and δ is the boundary layer, and it satisfies
δ � 0.05.

,e simulation time was set as 60 s, the tracking tra-
jectory and tracking error trajectory of the reference signal
are shown in Figures 6–9.

It can be seen from Figures 6–9 that the output of x and y
axes can quickly track the input signal in a limited time and
the steady-state deviation can be controlled in a very small
range.

In order to clearly show the advantages of the DRFNN of
NTSMC proposed in this paper, we also investigated the
control performance of the FNN of SMC in the simulation
for comparison. We use the conventional sliding surface
identified as s � _e + ke, where k � 5. For ensuring the
convergence to the sliding surface, the approach control rate
is selected as usw � ηsgn(s), where η � 10. Meanwhile, the
Gaussian basis function is selected as membership function
of the FNN as μ(xi) � exp[− (xi − ci)

2/2b2].
,e enlarged and comparison figure of the position

tracking error is shown in Figure 10, proving the trajectory
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tracking error based on the DRFNN of NTSMC has faster
convergence speed and smaller steady-state deviation,
which shows the trajectories of the DRFNN of NTSMC are
closer to the reference signal than those of the FNN of
SMC.

Figure 11 is the performance curve of control force,
which indicates that the input of the controller can be
basically stable within a certain range. Figure 12 also
adopts the DRFNN, but the sliding mode surface adopts
the ordinary terminal sliding mode (TSMC). It can be seen
that when the system state is in the subspace of a specific
state space, the control signal of the TSMC may show
undesired overshoots. By comparing Figures 11 and 12, it
is shown that the NTSMC can effectively solve the above

singular problems, which coincides with the theoretical
analysis.

Figure 13 is the dynamic figure of the sliding surface. It
can be seen that the state trajectory of the sliding surface can
rapidly converge to origin in a finite time, which indicates
that the system can remain in a stable state even in the
presence of model uncertainties and external disturbances.
Figure 14 is the enlarged figure after the state trajectory of
the DRFNN of NTSMC and the ordinary FNN of ordinary
SMC are magnified in the same coordinate system. It can be
seen from the comparison that the trajectory of the sliding
surface of the NTSMC converges to the convergence region
more rapidly; therefore, NTSMC can stabilize the system in a
shorter time.
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Figure 15 is the output of the DRFNN for the estimation
of the nonlinear term. It can be seen that the output of the
DRFFN is consistent with the value of the nonlinear term.
Figure 16 is the nonlinear term tracking error observed after
amplification waveform in the same coordinate system based
on the FNN of SMC and the DRFNN of NTSMC, re-
spectively, showing that the output of the DRFNN can more
quickly and accurately predict the actual value of the system
uncertainties.

Figures 17–21 are the self-regulating waveforms of the
five fully regulated parameters on the x-axis, respectively,

and Figures 22–26 are the self-regulating waveforms of the
five fully regulated parameters on the y-axis, respectively.
Both the x- and y-axis, the width vector, the center vector,
the inner feedback gain, outer feedback gain, and the
weight can quickly converge to a stable value, which
suggests the joined internal and external layer of the
feedback loop, and the proposed controller has outstanding
adaptive ability.

,e deviation degree of a group of measurement data
from the real value can be reflected by the root mean square
error (RMSE). ,e smaller the RMSE is, the higher the
control precision is. ,e calculation formula of RMSE is
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Figure 13: Sliding mode surface of the DRFNN on NTSMC.
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Figure 18: ,e center vector self-adjusting figure of the x-axis.
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Figure 22: ,e base width self-adjusting figure of the y-axis.
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Figure 23: ,e center vector self-adjusting figure of the y-axis.
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Figure 24: ,e inner gain self-adjusting figure of the y-axis.
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Figure 25: ,e outer gain self-adjusting figure of the y-axis.
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Figure 26: ,e weight self-adjusting figure of the y-axis.
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RMSE � sqrt sum
qi − qri( 􏼁

2

n
􏼠 􏼡􏼠 􏼡, (49)

where qi is the calculated trace value, qri is the reference
signal, and n is the sample number.

It can be intuitively seen from Table 1 that the RMSE
obtained based on the DRFNN of NTSMC on the micro-
gyroscope is smaller than that on the FNN of SMC.
According to the above analysis and comparison results, the
DRFNN of the NTSMC system has better desired control
performance.

6. Conclusion

In this paper, we designed a double-loop recurrent fuzzy
neural network of nonsingular terminal sliding mode
control for the MEMS gyroscope system. First, we sim-
plified the spatial structure model of the microgyroscope
and derived the dynamic differential equation. ,en, the
nonsingular terminal sliding mode control scheme is
employed to drive the state of the system to follow the
desired trajectory in a finite period of time. Meanwhile, we
eliminate the negative exponential term in the control rate,
thus avoiding undesired singularities in terminal control
law. Moreover, the DRFNN is introduced into the control
strategy to compensate the nonlinear term, which adds two
inner and outer feedback loops for guarantying the
adaptability of the controller. According to the comparative
results, the DRFNN of NTSMC has faster rate of reaction,
higher tracking accuracy, and more accurate estimation of
system uncertainties than the conventional control
method. ,erefore, the control strategy proposed in this
paper can be effectively applied in the microgyroscope
system.
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